organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

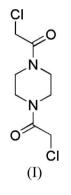
Juan Wang,^a Tao Zeng,^a* Mei-Ling Li,^b Er-Hong Duan^a and Jiang-Sheng Li^b

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bCollege of Pharmaceuticals & Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zengtaotj@126.com

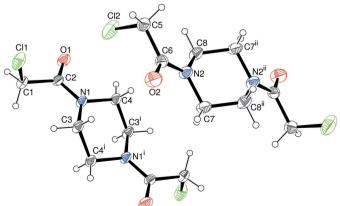
Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.041 wR factor = 0.107 Data-to-parameter ratio = 15.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4-Bis(chloroacetyl)piperazine

The title compound, $C_8H_{12}Cl_2N_2O_2$, contains two half-molecules in the asymmetric unit. The complete molecule is generated by inversion symmetry in both cases. Received 9 June 2006 Accepted 13 June 2006


Comment

Piperazine derivatives have important applications as drugs and as synthetic intermediates (Halazy *et al.*, 1996; Krakowiak *et al.*, 1991). As part of our studies in this area, the title compound, (I), was synthesized from piperazine and chloroacetyl chloride. There are two half-molecules in the asymmetric unit. The complete molecule is generated by inversion symmetry in both cases, resulting in a typical chair conformation for the piperazine rings (Fig. 1). The conformations of the side chains of the two molecules are very similar (Table 1).

Experimental

Chloroacetyl chloride (54.2 g, 0.48 mol) was added dropwise to a solution of piperazine (17.2 g, 0.2 mol) in water (200 ml) at 263 K for 1 h. Na_2CO_3 (25.4 g, 0.24 mol) was then added. The reaction mixture was stirred at 263–268 K for a further 1 h. The precipitate was filtered

Figure 1

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

A view of the two independent molecules of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, -z.]

off, washed with water and dried *in vacuo*. Suitable crystals (yield 40.1 g, 83.9%; m.p. 408–410 K) of (I) were obtained by slow evaporation of solution in a mixture of dichloromethane and acetone (1:1 v/v).

Crystal data

 $\begin{array}{l} C_8 H_{12} Cl_2 N_2 O_2 \\ M_r = 239.10 \\ \text{Triclinic, } P\overline{1} \\ a = 6.585 \ (6) \ \mathring{A} \\ b = 9.339 \ (9) \ \mathring{A} \\ c = 9.567 \ (9) \ \mathring{A} \\ \alpha = 69.501 \ (16)^\circ \\ \beta = 89.001 \ (16)^\circ \\ \gamma = 80.591 \ (15)^\circ \end{array}$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.865, T_{\max} = 0.904$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.061908 reflections 127 parameters H-atom parameters constrained $V = 543.2 (9) \text{ Å}^{3}$ Z = 2 $D_{x} = 1.462 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.57 \text{ mm}^{-1}$ T = 294 (2) KBlock, colourless $0.26 \times 0.20 \times 0.18 \text{ mm}$

2747 measured reflections 1908 independent reflections 1469 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 25.0^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.0416P)^2]$
+ 0.2514P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C2-N1	1.359 (3)	C6-N2	1.360 (3)
Cl1-C1-C2-O1	-102.2 (2)	Cl2-C5-C6-O2	-102.5 (3)
Cl1-C1-C2-N1	78.4 (2)	Cl2-C5-C6-N2	77.7 (3)

All H atoms were positioned geometrically (C-H = 0.97 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Halazy, S., Perez, M., Fourrier, C., Pallard, I., Pauwels, P. J., Palmier, C., John, G. W., Valentin, J.-P., Bonnafous, R. & Martinez, J. (1996). J. Med. Chem. 39, 4920–4927.
- Krakowiak, K. E., Bradshaw, J. S., Jiang, W. M., Dalley, N. K., Wu, G. & Izatt, R. M. (1991). J. Org. Chem. 56, 2675–2680.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.